华教网 考试资讯 大气稳定度_大气稳定度的概念三

大气稳定度_大气稳定度的概念三

1、大气[大气,就是包围地球的空气,而天气,从现象上来讲,绝大部分是大气中水分变化的结果。]静力稳定[稳定是一个汉语词汇,读音为wěn dìng,其含义有稳固安定;没有变动;使稳定。]度的特点

取决于温度[温度(temperature)是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。]变化
静力稳定度的特点,取决于气块[ …]在运动过程中的温度变化,也依赖于周围大气温度的铅直分布。假设处于平衡状态下的一块干空气,它的温度、压力和密度与周围大气相同,当它受到某种冲击作用而作铅直运动时,不与周围大气混和,又不干扰周围大气,且在运动过程中和周围大气的气压处处相等。当干空气块绝热上升时,因绝热膨胀,气块温度下降,每上升单位高度温度下降的值通常称为气块的干绝热递减率[油、气田开发一定时间后,产量将按照一定的规律递减,递减率就是指单位时间内产量递减的百分数。]或干绝热直减率,记为Γd。它近似为每100米高度温度下降1℃。就气块周围的大气而言,其温度通常也随高度的增加而降低(若温度随高度的增加而升高,则这种铅直分布称为逆温,具有逆温层[逆温层指大气对流层中气温随高度增加的现象的层带。]结的大气层,称为逆温层),每增加一个单位高度,温度下降的值称为大气的温度递减率或气温递减率、气温直减率、温度直减率,记为Γ 。它的大小因时因地而异,但就平均而言,大约为每100米高度温度下降0.65℃。由于Γ和Γo的大小不同,上升的气块达到某高度时同周围大气的温度便有了差异,于是对气块便有了净阿基米德浮力,在此力作用下,气块就具有继续离开或者回到原来位置的趋势。当Γ >Γd时:气块上升,则其温度大于周围大气的温度;下降,则其温度小于周围大气的温度,即气块具有远离原来位置的趋势,这时,大气为不稳定的。当 Γ =Γd时:气块在上升或下降的过程中其温度始终与周围大气温度相同,即气块随遇而安,这时,大气为中性的。当Γ <Γd时:气块上升,则其温度小于周围大气的温度;下降,则其温度大于周围大气的温度,即气块具有回到原来位置的趋势,这时,大气为稳定的。当气块经过某一特定过程而达到饱和的高度(即凝结高度)后,则由于潜热的释放使气块得到热量,这时,气块每上升一个单位高度其温度下降的值称为湿绝热递减率或湿绝热直减率,记为Γs,它小于Γd,且因气压和气温的不同而异。在实际大气中,如果Γ >Γd,则周围无论是干空气还是饱和湿空气,都是不稳定的,称为绝对不稳定;同理,如果 Γ <Γs,大气总是稳定的,称为绝对稳定;若Γs<Γ<Γd,则对干空气来说,大气是稳定的,但对饱和湿空气来说大气是不稳定的,这种不稳定称为条件不稳定。当气块只有上升到某一临界高度后才呈现不稳定的大气,称为条件不稳定。
位势不稳定
处于静力稳定状态的大气,若将该大气的气柱一直抬升到完全饱和时就呈现静力不稳定状态,则这种状态称为位势不稳定。在美国,此状态也称为对流不稳定。

2、大气稳定度的概念四

大气稳定度指整层空气的稳定程度。以大气的气温垂直加速度运动来判版定。大气中某一权高度的一团空气,如受到某种外力的作用,产生向上或向下运动时,可以出现三种情况:
1.稳定状态。移动后逐渐减速,并有返回原来高度的趋势。
2.不稳定状态。移动后,加速向上向下运动。
3.中性平衡状态。如将它推到某一高度后,既不加速,也不减速而停下来,大气稳定度,对于形成云和降水有重要作用。有时也称大气垂直稳定度。
简而言之:空气受到垂直方向扰动后,大气层结(温度和湿度的垂直分布)使该空气团具有返回或远离原来平衡位置[[直流电动机]通电线圈的平面与磁感线垂直时,线圈受到的磁场的作用力相互平衡,我们把这个位置称为平衡位置。]的趋势和程度

3、大气稳定度的概念二

大气稳定度指静力学稳定度。在浮力作用下空气微团垂直方向运动的稳定性,内以平均温度梯度 或反映浮力作功的容指标 为判据。若位温随着高度增加而递减, <0,浮力作功增加空气微团的动能,上下运动能继续发展,称为静力学不稳定。若位温随着高度增加而递增(逆温), >0,空气微团反抗重力作功损耗动能,上下运动受到抑制,称为静力学稳定。 =0的时候空气微团处于随意平衡状态,称为中性稳定度。

4、如何判别大气静力稳定度?

通常运用气块模型:令气块离开平衡位置作微小的虚拟位移,(1)如果气块到达回新位置后有继续答移动的趋势,则此气块的大气层结是不稳定的,它表明稍有扰动就会导致垂直运动的发展;(2)如果相反,气块有回到原平衡位置的趋势,则这种大气层结是稳定的;(3)如果气块既不远离平衡位置也无返回原平衡位置的趋势,而是随遇平衡,就是中性的。

5、如何定量判断大气稳定度?稳定度对扩散有何影响?

大气稳定度是指在垂直方向大气稳定的程度,当rrd时气块加速度与其位移方向相同内,气块加速运动容,大气不稳定;当r<rd时气块加速度与其位移方向相同,气块加速运动,大气不稳定;r=rd大气是中性的。大气稳定度,也是影响大气稀释能力的一个重要气象因素。在白天,太阳辐射使地面温度上升,靠近地面的空气密度比上空的小,轻的空气在下,重的空气在上,容易使上下空气对流扰动。这时大气处于不稳定状态,向空气中排放的污染物[污染物,英文为pollutant。]就容易稀释。但是在夜间则相反,地面发生热量向外辐射,地表冷却,温度下降,靠近地面的温度比上空的空气温度低,称为逆温。这时重的空气在下,轻的空气在上,很难使大气发生上下交换,大气处于稳定状态。这种逆温层的厚度,可达几十米以至几百米。它象一个大盖子笼罩大地,阻止地面气流上升运动,使污染物停滞积累在地面上,加剧大气污染[大气污染是指大气中一些物质的含量达到有害的程度以至破坏生态系统和人类正常生存和发展的条件,对人或物造成危害的现象。]的程度。

6、对大气稳定度进行诊断的物理量是什么指数

有很多。
大气层结稳定度有很多指数,位温,假相当位温,CAPE值,回K指数,答SI指数,CIN值,DECAPE值,TT指数,LI指数,垂直风切变,0度层高度,-20层高度等,再结合抬升凝结高度,对流凝结高度,自由对流高度等,可以判断大气的稳定与否。

7、地面风速对大气稳定度的影响

在自然条件下,风、雨、云、雾、太阳辐射量、大气稳定度以及特殊的逆温层等,都对大气污染有一定的影响。

气体扩散,主要是风的作用。风,包括风向、风速和湍流几个方面。风向,即风的吹向,决定污染的地域。一般来说,把住宅区建在污染源的主导风向的下风向是不利的,它容易受到有害气体的危害。风速,即风的强弱,会影响近地面的大气污染物的扩散速度。污染物在大气中排放的浓度与总排放量成正比,而与平均风速成反比。若风速增加一倍,则下风侧有害气体浓度就减少一半。因为风力的加大,使单位时间内通过烟波断面的空气量增大和湍流扩散增强,起着稀释烟尘污染的作用。湍流,是指不规则流动的空气。仔细观察风,就会感到风速时大时小,有阵性,而且沿主导风向常出现左右和上下的无规则摆动。这种无规则的阵性摆动,叫做大气湍流。大气污染物的扩散,主要是靠大气湍流的作用。

太阳辐射量,即日射强时,地面空气温度升高很快,排到大气中的污染物质,就随着上升的气流而被排送高空与上层空气交换,进行自然净化。

大气稳定度,也是影响大气稀释能力的一个重要气象因素。在白天,太阳辐射使地面温度上升,靠近地面的空气密度比上空的小,轻的空气在下,重的空气在上,容易使上下空气对流扰动。这时大气处于不稳定状态,向空气中排放的污染物就容易稀释。但是在夜间则相反,地面发生热量向外辐射,地表冷却,温度下降,靠近地面的温度比上空的空气温度低,称为逆温。这时重的空气在下,轻的空气在上,很难使大气发生上下交换,大气处于稳定状态。这种逆温层的厚度,可达几十米以至几百米。它象一个大盖子笼罩大地,阻止地面气流上升运动,使污染物停滞积累在地面上,加剧大气污染的程度。

国外发生多次的大气污染事故,都是在这种逆温条件下,加上不利的地形地理条件产生的

8、烟流[烟流又称烟羽或烟云,是污染源排放的烟气流动的轮廓。]形状与大气稳定度关系是怎样的

大气污染状况与大气稳定度有密切关系。大气稳定度不同,高架点源排放烟流扩散形状和特点不同,造成的污染状况差别很大。典型的烟流形状有五种类型。①波浪型:烟流呈波浪状,污染物扩散良好,发生在全层不稳定大气中,即>d。多发生在晴朗的白天地面最大浓度落地点距烟囱较近,浓度较高。 ②锥型:烟流呈圆周形,发生在中性条件,即=d。 ③扇型:烟流垂直方向扩散很小,像一条带子飘向远方。从上面看,烟流呈扇形展开。它发生在烟囱出口处于逆温层中,即该层大气—d<-1。污染情况随高度的不同而异。当烟囱很高时,近处地面上不会造成污染,在远方会造成污染,烟囱很低时,会造成近处地面上严重的污染。 ④爬升型(屋脊型):烟流的下部是稳定的大气,上部是不稳定的大气,一般在日落后出现,由于地面辐射冷却,底层形成逆温,而高空仍保持递减层结。它持续时间较短,对地面污染较小。 ⑤漫烟型(熏烟型):对于辐射逆温,日出后逆温从地面向上逐渐消失,即不稳定大气从地面向上逐渐扩展,当扩展到烟流的下边缘或更高一点时,烟流便发生了向下的强烈扩散,而上边缘仍处于逆温层中,漫烟型便发生了。这时烟流下部—d>0,上部—d<1。这种烟流多发生在上午8~10点钟,持续时间很短

9、大气稳定度的概念一

大气稳定度指近地层大气作垂直运动的强弱程度,当气温垂直递减率γ>-1℃/100m时,大气呈不稳定状态.γ=-1℃/100m大气呈中性状态,γ<-1℃/100m时大气呈稳定状态。

10、大气稳定度的概念三

大气稳定度指大气湍流的状态,以理查逊数或相联系的指标为判据。按照定专义理查逊数是湍流属的浮力作功和切应力作功之比值(参见理查逊数),包含着静力学稳定度判据 ,定性方面与静力学稳定度一致,因此对大气湍流状态相应地冠以不稳定、稳定和中性的名称。定量方面指大气湍流状态的稳定度与静力学稳定度可有很大差别。例如贴近地面气层 数值常常很大,按照静力学稳定度应属于很不稳定或者很稳定,但因切应力作用更大,湍流状态实际上为近中性。又如对流边界层中部 ≈0,但湍流状态却属于很不稳定。大气湍流扩散与大气湍流状态有不可分的联系,大气扩散问题应用领域的大气稳定度通常以理查逊数或相联系的参数为基础所建立的稳定度分类法来划分。

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部